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Abstract

Experimental data and analyses of a reduced-order model are compared. The model is based on simplified physics

(actuator disk modelling of bladerows, typical section aeroelastic model) and the measured steady performance

characteristic. The model is not intended to be predictive, though it has been shown to be ‘‘tunable’’ to stability

measurements of the test rig. The objective of the effort is to estimate the relative sensitivity of flutter damping to system

parameters. It is found that flutter damping and stability predictions are in good quantitative agreement with measured

test rig data and industry experience. It is shown that the correct trends are predicted for alternate stiffness and stagger

mistuning.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Experimental flutter stability data acquired on a laboratory-scale fan research facility have been compared to the

results from a previously developed reduced-order model (Copeland and Rey 1998). The compressor characteristic was

empirically determined from measurements and model parameters describing total pressure loss across each bladerow

were chosen to match those measurements. Trends in damping and stability of high-incidence flutter with shaft speed

and mass flow were predicted in good agreement with the measurements.

The reduced-order model for simulation and stability analysis of high-incidence flutter and rotating stall was

constructed based on an actuator disk approach. The analytical description is based on matching two-dimensional

incompressible flow fields across actuator disks representing a flexible rotor and a rigid stator. The model takes the form

of a system of differential-algebraic equations derived from idealized governing equations using symbolic algebra. The

framework is such that changes to the physical modelling can be easily incorporated.

The fundamental difference between the present actuator disk modelling approach and the classical methods

(Whitehead 1987) is that there is no attempt here to model the flow in the blade passages. It is assumed that the blade

geometry largely determines the flow angles and that the pressure rise across each bladerow can be experimentally

measured. The aerodynamic force on the flexible blades can then be determined directly using the control volume

approach.
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Reduced-order models may be appropriate for on-engine diagnostics and control. The present model has been used

to support experimental work in diagnostics and control (Banaszuk et al. 2002). They may also be used to test some of

the simplifications typically necessary in higher-fidelity computational models such as the modelling of losses, choice of

the inlet boundary condition, and the influence of downstream bladerows. One cannot expect good predictive capability

from such a model; rather the objective is to determine qualitatively the trends in system stability and nonlinear

dynamics as system parameters are varied. The focus of the present work is on the determination of stability boundaries

through generalized eigensystem analyses and their parametric sensitivity. Numerical simulation and analysis have been

used previously to demonstrate that stable flutter and stall limit cycles may coexist (Copeland 1997).

2. Experiment

Measurements of flutter damping were conducted on the 170 0-fan test rig shown in Fig. 1. The rig has one fan stage

with 16 blades on a rotor powered by an external air turbine and one (stator) row of exit guide vanes. The titanium

rotor blades are found to flutter in their first bending mode of vibration. The rotor-frame frequency of this mode

increases with shaft speed due to centrifugal stiffening; the in-vacuum natural frequency of vibration is predicted with

finite-element modelling to be 242Hz at 9000 r.p.m. There is a much smaller aerodynamic effect on stiffness. Varying

the fan exit area with a translating throttle plug controls the flow through the rig. Reducing the throttle area decreases

the flow, which increases the incidence angle of the air approaching the blades ultimately de-stabilizing the flutter

modes.

The methodology for aeromechanical system identification is shown in Fig. 2. Two eddy current sensors were used

independently to measure the blade displacement in the stationary frame. Passage of a blade results in an impulse in the

signal from the eddy current sensors. The time difference DT between the measured arrival time and the ‘‘rigid-blade’’

arrival time (based on the shaft speed and the number of blades) was used as a measure of blade deflection. Ten

speakers mounted in cavities evenly distributed around the fan casing were used as actuators. The experiments reported

here were performed at 8000, 8500, 9000, and 9500 r.p.m. at multiple throttle settings for each speed.

A well-known characteristic of turbomachinery flutter is the frequency distribution of the flutter modes as measured

in the stationary frame. A forward-travelling flutter mode

aðy; tÞ; qðy; tÞpexpðot � nyÞ

ARTICLE IN PRESS

Fig. 1. 1700 diameter experimental fan rig.
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will have an observed stator frame frequency equal to

oþn ¼ oþ nO;

where O is the angular velocity of the rotor shaft.

For system identification the flutter modes were modelled as a real-valued second-order system. The parameters were

identified from swept-sine experiments. A second-order transfer function was fitted to the experimentally obtained

transfer function from a spectral analyzer. The actuators were used to drive a standing wave in the form of a discretized

cosine. For example, speaker m, where m is between 1 and 10, was driven with an excitation signal

fmðtÞ ¼ f0 cos 2p
m

10

� �
cos otð Þ:

Fig. 3 shows the Bode plots from a sine-sweep experiment and the corresponding second-order fits for flutter modes

for nodal diameter n ¼ 2 at 9000 r.p.m. and a mass flow rate of 39 lbm/s. Note that the second-order transfer function

fits to experimental data are good near the flutter frequency (i.e., the frequency at the resonant peak of the magnitude),

but there is an increasing phase error away from the flutter frequency. The measured stationary-frame flutter frequency

is 552Hz corresponding to a rotor frame frequency of 252Hz. The measured rotor-frame damping ratio is 0.0070.

3. Mathematical model

Modelling for flutter prediction has been shown to be a difficult technical challenge even for computational fluid

dynamics approaches [Silkowski et al. (2002)] with a high-fidelity representation of the fundamental physics. It is

reasonable to question why a simple actuator-disk approach should work. System stability is determined fundamentally

by the balance of mass, momentum, and energy across each element of the system. The effects that are hardest to

predict from first principles are exactly those that are determined empirically in the present approach.

Limitations of the present approach include:

(i) typical-section airfoil only appropriate for low-order structural modes—a reasonable assumption for high-

incidence flutter;
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Fig. 2. Schematic of off-blade aeromechanical identification system.
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(ii) there is no accounting for structural coupling between blades—this coupling is particularly important for shrouded

fans and integrally bladed rotors;

(iii) actuator disk implies a continuum of blades; flow perturbations that are comparable in scale to the blade-passage

width may not be captured well by empirical approximations for loss or by modelled physics;

(iv) losses depend on secondary flows (three dimensional); empirical functions for loss do not extrapolate well;

(v) the aerodynamic center is assumed fixed; in reality, it is of course a function of the flow and may vary considerably

as the flow becomes trans-sonic.

A schematic of the physical model is shown in Fig. 4. The fundamental variables governing the flow are the

components of velocity and pressure at four discrete axial stations: the rotor leading edge (1),1 the rotor trailing edge

(2a), the stator leading edge (2b), and the stator trailing edge (3). At each station, equations are derived relating the flow

variables at that station to the flow variables at the previous station (or the free stream). Additional variables are

required to account for dynamic losses, rotor deformation, and vorticity transport. The dynamic equations associated

with the rotor actuator disk relating the flow variables at the rotor trailing edge to the flow at the rotor leading edge
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Fig. 3. Transfer functions for flutter mode n=2. Experimental data and second-order fit.

1These numbers correspond to the subscripts used in the symbols, in the analysis that follows.
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require additional states describing blade deformation and total pressure loss. The equations associated with the inter-

bladerow gap relating the flow variables at the stator leading edge to the flow variables at the rotor trailing edge require

additional variables describing the vorticity field. The exit guide vanes are assumed rigid but additional variables for

dynamic loss across the stator are required.

The underlying physics and assumptions for the each of the model components are described below. For brevity, the

derivation of the underlying differential-algebraic equations of the model is discussed for the rotating bladerow only.

These are the most complicated equations of the model and the approach taken differs significantly from previous

investigators. Full details of the development of the model equations are described in Copeland and Rey (1998).

3.1. Inlet duct

Modelling of the flow in the inlet duct is identical to that of Moore and Greitzer (1986). The azimuthal dependence of

the flow is modelled by a linear perturbation to the nominal axisymmetric flow. The perturbation flow field is assumed

to be irrotational and incompressible. The system is assumed to draw flow from a reservoir with constant total pressure,

which would include the relative free-stream velocity. The governing equations are the conservation of mass and

momentum.

3.2. Rotor

As mentioned previously, we do not attempt to model the flow in the blade passage; rather it is treated as a control

volume. The actuator disk equations relate the flow velocity components and pressure at the upstream face f1, v1, and

p1, to the velocity components and pressure at the downstream face f2a, v2a, and p2a. These are derived from the

conservation equations for mass, momentum, and energy in the deforming control volume. The equations for blade

vibration and a kinematic constraint on the trailing-edge flow velocity are also required for closure.

In contrast to the Gysling and Myers (1996) and Wong (1997), all flow and blade deformation quantities are

determined as smoothly varying functions of the azimuthal angle. In those earlier works, a representative blade passage

was taken as the control volume. In the present approach the control volume can be taken arbitrarily thin, which is

more consistent with an actuator disk approach.

3.2.1. Conservation of mass

Conservation of mass within the deforming control volume may be expressed as follows:

d

dt

Z
r dV þ

Z
rðvr � nÞ dS ¼ 0:

The subscript r on the velocity vector indicates velocity with respect to the moving boundary. The time derivate on

the volume integral is to be taken in the rotor frame. The flow is assumed to be two dimensional and incompressible.

Mass flux occurs over the leading- and trailing-edge boundaries only, hence the mass conservation equation may be

expressed

@

@t
�

@

@y

� �
@V

@y
þ ðvr;le � nleÞ

@sle

@y
þ ðvr;te � nteÞ

@ste

@y
¼ 0; ð1Þ

where the gradient of the volume is approximated by

@V

@y
¼ c cosðgr � aÞ

1

2

@ste

@y
þ
@sle

@y

� �
;

ste and sle are path lengths along the leading- and trailing-edge boundaries of the control volume,

@sle

@y
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@xle

@y

� �2

þ
@yle

@y

� �2
s

;
@ste

@y
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@xte

@y

� �2

þ
@yte

@y

� �2
s

;

and xle, yle, xte, and yte are coordinates of the leading and trailing edges of the control volume,

yle ¼ yþ q cos gr � xeac sinðgr � aÞ; yte ¼ yþ q cos gr þ ð1� xeaÞc sinðgr � aÞ;

xle ¼ �q sin gr � xeac cosðgr � aÞ; xte ¼ �q sin gr þ ð1� xeaÞc cosðgr � aÞ:
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The relative velocity between the flow and the control volume leading edge is given by

vr;le ¼ ðf1i þ v1jÞ �
@

@t
�

@

@y

� �
ðxlei þ ylejÞ:

Similarly, the relative velocity between the flow and the control volume trailing edge is given by

vr;te ¼ ðf2ai þ v2ajÞ �
@

@t
�

@

@y

� �
ðxtei þ ytejÞ:

The outward normal vectors are given by

nle ¼ �cos blei þ sin blej; nte ¼ cos btei � sin btej;

where the angles ble and bte are given by

tan ble ¼
@xle=@y
@yle=@y

; tan bte ¼
@xte=@y
@yte=@y

:

The control volume definition sketch and the positive sense of blade deformation are shown in Fig. 5.

3.2.2. Conservation of linear momentum

For two-dimensional incompressible flow with mass flux through the leading- and trailing-edge boundaries,

conservation of linear momentum within the deforming control volume may be expressed as

@

@t
�

@

@y

� �
v
@V

@y

� �
þ ½vleðvr;le � nleÞ þ plenle	

@sle

@y
þ ½vteðvr;te � nteÞ þ ptente	

@ste

@y
¼ �

@F

@y
; ð2Þ

where F is the force exerted on the flow by the blades. The rotor-frame leading- and trailing-edge flow velocities and

pressures are given by

vle ¼ f1i þ ð1þ v1Þj; vte ¼ f2ai þ ð1þ v2aÞj;

ple ¼ p1; pte ¼ p2a:
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Additionally, the flow velocity within the control volume is approximated by the average of the leading- and trailing-

edge flow velocities

v ¼ 1
2
ðvle þ vteÞ:

3.2.3. Conservation of energy

For two-dimensional incompressible flow with mass flux through the leading- and trailing-edge boundaries,

conservation of energy within the deforming control volume may be expressed

@

@t
�

@

@y

� �
1

2
v2

@V

@y

� �
þ ple þ

1

2
v2le � Lr

� �
ðvr;le � nleÞ

@sle

@y
þ pte þ

1

2
v2te

� �
ðvr;te � nteÞ

@ste

@y
¼ �

@F

@y
� vcv; ð3Þ

where the velocity of the control volume is approximated by the average of the velocities of the leading- and trailing-

edge boundaries

vcv ¼
@

@t
�

@

@y

� �
xle þ xte

2
i þ

yle þ yte

2
j

� �
þ j:

3.2.4. Blade dynamics

The blade dynamics are modelled using the typical section approach [Theodorsen (1935)]. The aerodynamic force

which is coupled to the flow quantities through the momentum and energy conservation equations acts at aerodynamic

center (assumed to be fixed at one-quarter chord length downstream from the leading edge). The blade plunge and twist

are modelled as a pair of single degree of freedom oscillators with coupling through the inertia matrix. The inertial

coupling vanishes when the elastic axis and center of gravity are coincident. The aerodynamic moment vanishes when

the aerodynamic center and the elastic axis are coincident. Nominal values for the typical section parameters are

extracted from a finite-element analysis of the first two vibration modes.

The blade bending and twist equations are as follows:

@

@t
�

@

@y

� �2

q þ ðxea � xcgÞc
@

@t
�

@

@y

� �2

aþ 2zbQb
@

@t
�

@

@y

� �
q þ Q2

bq ¼
Fl

D
; ð4Þ

@

@t
�

@

@y

� �2

aþ
ðxea � xcgÞcD

Iea

@

@t
�

@

@y

� �2

q þ 2ztQt
@

@t
�

@

@y

� �
aþ Q2

t a ¼
M

Iea

; ð5Þ

where

Fl ¼ ½Fðyþ p=Nb; tÞ � Fðy� p=Nb; tÞ	½�sinðgr � aÞi þ cosðgr � aÞj	;

M ¼ Flðxea � xcpÞc

and

Iea ¼ Dðxea � xcgÞ
2c2 þ Dc2e2:

3.2.5. Kinematic constraint

For closure, it is necessary to assume that the exit flow angle is fixed by the metal angle of the deflected blade plus

some deviation

v2a � ð @@t
� @

@yÞyte

f2a � ð @@t
� @

@yÞxte

¼ tanðbr � aþ DÞ; ð6Þ

where br is the metal angle of the trailing edge and the deviation D is assumed to be a linear function of the incidence

angle

D ¼ D1ainc;r þ D2:
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The flow velocity relative to the leading edge, vr;le; has been defined previously. The incidence angle is then the

difference between the flow angle and the leading-edge metal angle

ainc;r ¼ tan�1
vr;le � j

vr;le � i

� �
� bzr þ a;

where bzr is the zero incidence angle of the undeflected blade. The flow geometry is sketched in Fig. 5.

3.2.6. Lagged loss

The loss across the rotor bladerow, Lr; appears in the equation for energy conservation (3). As discussed in the

previous section, the flow deviation from the trailing edge is assumed small and proportional to the incidence angle. The

ideal pressure rise across the bladerow under steady conditions may then be determined using the Euler turbine

equation. The difference between this ideal pressure rise and the measured pressure rise is the steady loss. Assuming that

loss is a function of incidence angle only, the measured values can be fit well with a quadratic polynomial,

Lr;qs ¼ Lr1a2inc;r þ Lr2ainc;r þ Lr3:

Thus, the model is ‘‘tuned’’ to match the steady performance of the experimental test rig. A first-order lag equation is

used to model the fact that the time-dependent losses do not instantly equilibrate to changes in local incidence,

@

@t
�

@

@y

� �
Lr ¼ �

1

t
ðLr � Lr;qsÞ: ð7Þ

The time constant is chosen consistent with the blade passage convection time.

Eqs. (1), (3)–(7) and the two components of Eq. (2) are used to relate the exit flow quantities, f2a; v2a; and p2a; the
blade deformation, a and q; the aerodynamic force, F, and the loss, L, to the upstream flow quantities f1; v1; and p1:
Each of these field quantities is projected over a finite number of Fourier components in the azimuthal variable. In the

case of blade twist for example,

aðy; tÞ ¼ a1ðtÞ þ
XN

n¼1

a2nðtÞcosðnyÞ � a2nþ1ðtÞsinðnyÞ:

A time-dependent system of differential algebraic equations is then derived through Galerkin projection of Eqs. (1)–(7)

over the Fourier modes. From the Nyquist criterion, the number of Fourier modes required is equal to half the number

of blades in the rotor.

3.3. Inter-bladerow gap

In the inter-bladerow gap, the azimuthal dependence of the flow is again modelled as a linear perturbation to the

nominal axisymmetric flow. The perturbation to the axisymmetric flow is modelled as vortical, incompressible, inviscid

flow. Inviscid flow implies that the vorticity is simply convected downstream. The perturbation velocity and pressure

fields at the upstream and downstream ends of the inter-bladerow duct will be related to each other through the

streamfunction and the associated vorticity.

The convection of vorticity implies a delay equation. In the present work, the convective delay is approximated with a

first-order lag equation. The streamfunction is then determined and used to provide a mapping between the upstream

and downstream pressures and velocities.

3.4. Stator (exit guide vanes)

The same fundamental equations of mass, momentum, and energy conservation apply equally to the stator as to the

rotor. In the case of the stator, however, the vanes are assumed to be rigid thus the control volume does not deform.

The conservation equations simplify immensely. Conservation of mass implies that axial components of velocity at the

stator leading edge and trailing edges must be equal. The energy and axial momentum conservation equations are

equivalent and reduce to the Bernoulli turbine equation. As in the case of the rotor, the steady losses are identified from

data and a first-order lag equation is used to model the fact that the losses do not instantly equilibrate to changes in

local incidence.

The exit guide vanes are designed for an exit flow angle of zero. The flow deviation at the vane trailing edge is

neglected hence the trailing-edge azimuthal velocity is zero. This is a simplifying assumption rather than a necessary

assumption.
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3.5. Exit duct

In the exit duct, the azimuthal dependence of the flow is again modelled as a linear perturbation to the nominal

axisymmetric flow. The nominal flow leaving the fan is a uniform jet.

With respect to flow perturbations, the flow in the exit duct is assumed to be incompressible and rotational. As

mentioned previously the exit flow angle from the stator is zero; hence there is no azimuthal velocity at the stator

trailing edge. The duct length is assumed infinitely long thus the flow perturbations decay exponentially downstream

from the stator.

4. Results

4.1. Comparison of model and experiment

For parameters consistent with the test facility, the model gives very reasonable predictions of damping for flutter

and stall. The model is ‘‘tuned’’ by choosing the losses as quadratic functions of the angle of attack to match the 9000

r.p.m. speedline of the test facility. The extent to which the predictions match other speeds is a measure of model

robustness.

From a performance perspective, our interest is in stability boundaries on the operability map. Remarkably, these

stability boundaries are found to be in good qualitative agreement with typical experience. Fig. 6 is a plot of the

predicted stall and flutter stability boundaries on the operating map. A representative speedline corresponding to 9000

r.p.m. and the points at which flutter stability data have been acquired are indicated as well.

It is necessary to prescribe the structural damping parameter in order to match the average measured flutter damping

across all nodal diameters. All other parameters are determined from the rig and blade geometry or are chosen by

engineering judgement.

The most fundamental stability result is the relative stability of the flutter modes as a function of wave number (Fig.

7) and how the calculated values of damping vary with the operational parameters speed and flow (Fig. 8). Fig. 7 shows

that the forward-travelling modes are least damped for this parameterization and that the zero and first-forward nodal

diameter modes are most critical. Damping of all of the flutter modes decreases gradually with flow. Fig. 8 shows the

dependence of damping of the critical flutter mode (nodal diameter 0) on flow as the exit flow area is varied for two

different constant speeds. The damping trend with flow agrees well with the measured data but the model over-predicts

the trend of damping with speed.
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Fig. 6. Predicted flutter and stall stability boundaries on the operability map. This line corresponds to 9000 r.p.m. speedline. 
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4.2. Parametric sensitivity

4.2.1. Sensitivity to natural frequency

Perhaps the first useful tool in engineering design for stall flutter avoidance was the development of experience-based

flutter boundaries as functions of reduced velocity and rotor incidence angle. It is intuitive that higher incidence angles

would be required to trigger flutter as the blades become effectively stiffer. These boundaries were found to be reliable

across a ‘‘family’’ of similar blade designs under similar test conditions. The present model reflects this time-tested

observation. The flutter boundary as a function of reduced velocity and incidence angle is plotted in Fig. 9. These points

were computed by scaling the bending and torsional stiffnesses uniformly while holding all other parameters constant.

4.2.2. Sensitivity to plunge-to-twist ratio

Among the parameters most influential to flutter damping are those that govern the plunge-to-twist ratio of the blade

deformation eigenmodes. In Fig. 10, the influence of plunge-to-twist ratio on flutter damping is examined. The ratio of
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plunge-to-twist was varied by simultaneously adjusting the offset of the elastic axis from the center of gravity and the

torsion and plunge stiffnesses in order to maintain the nondimensional natural frequencies. The impact on flutter

damping is profound and suggests that mode shape ‘‘tailoring’’ may be an extremely fruitful direction of research even

though the fundamental vibration mode shapes are strongly constrained by considerations of aerodynamic

performance, cost, and weight.

4.2.3. Mistuning benefit

Fig. 11 contrasts the predicted effects of stagger and stiffness mistuning. Consistent with the previous literature, it is

found that very modest alternate-blade stiffness mistuning is predicted to provide significant benefit to flutter damping

(Crawley and Hall (1985); Bendiksen (1986); Shapiro (1998). In contrast, alternate-blade stagger mistuning is predicted

to be weakly de-stabilizing. Aerodynamic mistuning has, in general, received far less attention in the literature

(Bendiksen 1986). It is evaluated here in order to invalidate the supposition that moderate asymmetry of any sort is

necessarily beneficial.

A consequence of mistuning is that the steady state solution is no longer axisymmetric nor are the system eigenmodes

associated with any single Fourier harmonic. Of course, mistuning of sufficient magnitude will generate small length-

scale disturbances pushing the limits of model validity.
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In order to verify the efficacy of alternate-blade stiffness mistuning, as opposed to improvement simply from a shift in

the average frequency, three experimental configurations were tested: the baseline rotor with flexible blades, a rotor with

stiff blades, and a rotor with alternate flexible and stiff blades. At speed, the blade vibration frequencies of the flexible

and stiff blades are 23% lower and 23% higher than the average frequency. In the case of the all-flexible and all-stiff

configurations, the flutter modes were clearly evident in power spectra of blade deflection and strain gage data. For the

mistuned disk, flutter was undetectable at all operating points. Practical limitations prevented considering a case with a

more modest level of mistuning.

Experimentally determined speedlines for the flexible, mistuned, and stiff disks are shown below in Fig. 12. For the

flexible disk configuration, operability was limited by high-incidence flutter in the first bending mode in a zero nodal

diameter pattern (ND0). The forward-travelling first nodal diameter mode (ND1+) was also very lightly damped. In

contrast, the operability for the stiff and mistuned configurations was limited by rotating stall only; flutter was not

detected any where in this operating range.

Spectral analysis of blade deflection and strain for the configuration with flexible blades and for the configuration

with stiff blades revealed sharp peaks corresponding to the least damped flutter modes. In contrast, there were no peaks

evident in the spectra for the alternating-stiffness disk other than multiples of the shaft frequency. A comparison of

power spectral densities of root leading-edge strain for one of the flexible blades between the all-flexible configuration

and the alternating flexible-stiff configuration is shown in Fig. 13. Note that the two flutter modes (ND0 and ND1+)

clearly stand out from the broad peak at 250Hz. This is a typical for rotor-frame measurements. Blade deflection

measurements from the same tests are presented in Fig. 14. These measurements are relative to the stator frame, which

helps in the interpretation by clearly separating the travelling wave modes. System identification of the two flutter

modes yielded a natural frequency of 273Hz and damping ratio of 0.89
 10�3 for the ND0 mode and a frequency of

407Hz and (rotor frame) and damping ratio of 1.35
 10�3 for the ND1+ mode. The disk of stiff blades likewise

exhibited clear flutter peaks but they are much more damped than the flutter modes of the flexible disk. The lowest

measured flutter damping ratio was 2.70
 10�3 for the ND0 mode, which was at 440Hz. The mistuned disk did not

have any clear flutter modes. The broad-band response around 400Hz (Fig. 14, lower plot) was swept with nodal

diameters 0, 1, 2 and 3 forcing but no travelling wave response could be elicited.

A mental picture for the beneficial effect of alternating-stiffness mistuning is that for disturbances at either frequency,

every other blade is effectively unmoving. It is as if each blade is oscillating in a fixed channel.

Figs. 15 and 16 summarize the measured effects of alternate stagger mistuning on flutter damping. In these

experiments the stagger angle varies 6.7% from nominal alternately up and down. Fig. 15 shows the flutter stability

boundaries for the ‘‘tuned’’ (baseline) case and the mistuned case. Measured on five different speedlines, the flutter
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boundary for the alternate-stagger mistuning configuration is encountered at lower pressure ratios than in the baseline

case. The stability-limiting flutter mode in all cases is ND0. The flutter damping for multiple nodal diameters are

compared in Fig. 16.
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Fig. 13. Power spectra of root-leading edge strain, same blade, for tuned (flexible) configuration and for alternate-blade stiffness

mistuning.

Fig. 14. Power spectra of blade deflection for tuned (flexible) configuration and for alternate-blade stiffness mistuning.
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5. Conclusion

The present results demonstrate that actuator disk models have good predictive capability for trends in flutter

stability when appropriately parameterized to match the over-all performance (pressure rise as a function of flow).

Furthermore, these models have been exercised to evaluate parameter sensitivity that would be quite difficult to

evaluate through testing or higher-fidelity modelling.

The model is relatively low dimensional and is suitable for development of active or passive control strategies. Such

models may ultimately be useful for on-engine diagnostics or control.
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